深度学习归一化技术的基本特性,例如批准归一化,正在使范围前的参数量表不变。此类参数的固有域是单位球,因此可以通过球形优化的梯度优化动力学以不同的有效学习率(ELR)来表示,这是先前研究的。在这项工作中,我们使用固定的ELR直接研究了训练量表不变的神经网络的特性。我们根据ELR值发现了这种训练的三个方案:收敛,混乱平衡和差异。我们详细研究了这些制度示例的理论检查,以及对真实规模不变深度学习模型的彻底经验分析。每个制度都有独特的特征,并反映了内在损失格局的特定特性,其中一些与先前对常规和规模不变的神经网络培训的研究相似。最后,我们证明了如何在归一化网络的常规培训以及如何利用它们以实现更好的Optima中反映发现的制度。
translated by 谷歌翻译
用于无线多输入多输出(MIMO)系统的通道解码,通道检测,信道评估和资源管理是可以成功应用机器学习(ML)的问题的所有问题。在本文中,我们研究了几种方法来解决一定的预编码方案估算谱效率(SE)值的问题,优选在最短的时间内。在平均平均百分比误差(MAPE)方面的最佳结果是通过梯度升高分类特征,而线性模型展示了更差的预测质量。神经网络同样地表现为渐变升压,但由于超参数调谐和频繁再培训,它们更具资源和耗时。我们研究了所提出的算法在四极针模拟器产生的广泛情景中的实际适用性。在几乎所有场景中,使用渐变升压和神经网络实现的MAPE小于10 \%。
translated by 谷歌翻译
培训具有批量标准化和重量衰减的神经网络已成为近年来的常见做法。在这项工作中,我们表明它们的结合使用可能导致优化动态的令人惊讶的周期性行为:培训过程定期表现出稳定,然而,不会导致完全发散但导致新的培训期。我们严格研究了从经验和理论观点的发现的定期行为基础的机制,并分析了实践中发生的条件。我们还证明,周期性行为可以被视为在批量归一化和体重衰减的训练中进行两种先前反对的视角的概括,即平衡推定和不稳定的推定。
translated by 谷歌翻译
Missing values are a common problem in data science and machine learning. Removing instances with missing values can adversely affect the quality of further data analysis. This is exacerbated when there are relatively many more features than instances, and thus the proportion of affected instances is high. Such a scenario is common in many important domains, for example, single nucleotide polymorphism (SNP) datasets provide a large number of features over a genome for a relatively small number of individuals. To preserve as much information as possible prior to modeling, a rigorous imputation scheme is acutely needed. While Denoising Autoencoders is a state-of-the-art method for imputation in high-dimensional data, they still require enough complete cases to be trained on which is often not available in real-world problems. In this paper, we consider missing value imputation as a multi-label classification problem and propose Chains of Autoreplicative Random Forests. Using multi-label Random Forests instead of neural networks works well for low-sampled data as there are fewer parameters to optimize. Experiments on several SNP datasets show that our algorithm effectively imputes missing values based only on information from the dataset and exhibits better performance than standard algorithms that do not require any additional information. In this paper, the algorithm is implemented specifically for SNP data, but it can easily be adapted for other cases of missing value imputation.
translated by 谷歌翻译
During training, reinforcement learning systems interact with the world without considering the safety of their actions. When deployed into the real world, such systems can be dangerous and cause harm to their surroundings. Often, dangerous situations can be mitigated by defining a set of rules that the system should not violate under any conditions. For example, in robot navigation, one safety rule would be to avoid colliding with surrounding objects and people. In this work, we define safety rules in terms of the relationships between the agent and objects and use them to prevent reinforcement learning systems from performing potentially harmful actions. We propose a new safe epsilon-greedy algorithm that uses safety rules to override agents' actions if they are considered to be unsafe. In our experiments, we show that a safe epsilon-greedy policy significantly increases the safety of the agent during training, improves the learning efficiency resulting in much faster convergence, and achieves better performance than the base model.
translated by 谷歌翻译
This paper examines the encoding of analogy in large-scale pretrained language models, such as BERT and GPT-2. Existing analogy datasets typically focus on a limited set of analogical relations, with a high similarity of the two domains between which the analogy holds. As a more realistic setup, we introduce the Scientific and Creative Analogy dataset (SCAN), a novel analogy dataset containing systematic mappings of multiple attributes and relational structures across dissimilar domains. Using this dataset, we test the analogical reasoning capabilities of several widely-used pretrained language models (LMs). We find that state-of-the-art LMs achieve low performance on these complex analogy tasks, highlighting the challenges still posed by analogy understanding.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
It has been experimentally demonstrated that humans are able to learn in a manner that allows them to make predictions on categories for which they have not seen any examples (Malaviya et al., 2022). Sucholutsky and Schonlau (2020) have recently presented a machine learning approach that aims to do the same. They utilise synthetically generated data and demonstrate that it is possible to achieve sub-linear scaling and develop models that can learn to recognise N classes from M training samples where M is less than N - aka less-than-one shot learning. Their method was, however, defined for univariate or simple multivariate data (Sucholutsky et al., 2021). We extend it to work on large, high-dimensional and real-world datasets and empirically validate it in this new and challenging setting. We apply this method to learn previously unseen NLP tasks from very few examples (4, 8 or 16). We first generate compact, sophisticated less-than-one shot representations called soft-label prototypes which are fitted on training data, capturing the distribution of different classes across the input domain space. We then use a modified k-Nearest Neighbours classifier to demonstrate that soft-label prototypes can classify data competitively, even outperforming much more computationally complex few-shot learning methods.
translated by 谷歌翻译
我们提出了Rudsi,这是俄罗斯语言感官诱导(WSI)的新基准。该数据集是使用单词用法图(WUGS)的手动注释和半自动聚类创建的。与俄罗斯的先前WSI数据集不同,Rudsi完全由数据驱动(基于俄罗斯国家语料库的文本),没有对注释者强加的外部词感官。根据图聚类的参数,可以从原始注释中产生不同的导数数据集。我们报告了几种基线WSI方法在Rudsi上获得的性能,并讨论了改善这些分数的可能性。
translated by 谷歌翻译
为了在高移动性虚拟环境中实现柔软物体的高富度触觉渲染,我们提出了一种新颖的触觉显示dandeliontouch。一群无人机将触觉执行器传递给用户的指尖。 DandelionTouch的用户能够在不受设备工作区域限制的大空间中体验触觉反馈。重要的是,在与虚拟物体的长时间互动中,他们不会经历肌肉疲劳。手动跟踪和群控制算法允许用手动运动引导群,并避免在编队内部发生冲突。在这项研究中,研究了群体之间的阻抗连接的几种拓扑结构。该实验在实时在正方形轨迹上执行了一个遵循的实验,该实验表明,在恒星拓扑中连接的无人机执行了平均位置误差较低的轨迹(与其他阻抗拓扑相比,RMSE降低了20.6 \%与潜在的基于现场的群体控制相比,为40.9 \%。在所有具有阻抗行为的地层中,无人机的达到的速度比通过潜在场算法控制的群体高28%。此外,在与7名参与者的用户研究中评估了几种纤维骨架模式的感知。该研究表明,提议的时间延迟和频率调制的组合使用户可以同时成功识别VR中的表面特性和运动方向(平均识别率为70 \%,最大为93 \%)。 DandelionTouch建议在VR系统中提出一种新型的触觉反馈,无需手持或可穿戴界面。
translated by 谷歌翻译